Ammonit Soiling Measurement Kit

SD2100

- Determine PV performance losses due to soiling
- Calculation of the Soiling Loss Index (SLI) and . Soiling Ratio (SR)
- Measurement of short circuit current and module surface temperature

Soiling significantly affects the energy production of PV power plants. Effects of soiling on PV modules should be assessed site-specific due to variations in soil type, location and weather patterns. Implementing an Ammonit soiling measurement kit helps you to:

- Analyse soiling losses in the PV module performance
- Quantify site-specific impacts of soiling on PV energy production
- Optimize cleaning routines for best return-on-investment
- Determine typical soiling rates for forecasting models

Soiling is the accumulation of dust, dirt and other contaminants on the surfaces of PV modules. The amount of dust is extremely dependent on the location of the PV power plant, e.g., desert valley with sand storms. In absence of significant rain events or regular cleaning, production losses due to soiling effects increase. Measuring soiling effects provides important details about the PV power plant production, e.g., how much dust can be on the modules before any problem occurs and how does the dust affect transparency and efficiency of the modules.

Plane of Array (POA) irradiance, Soiling Ratio (SR) and Soiling Loss Index (SLI)

The temperature-corrected short-circuit current of a clean PV module is proportional to the irradiance. After measuring short-circuit current and temperature of the PV module, the POA irradiance can be determined using the following equation:

G:

G₀:

I_{sc}:

I_{sc, 0}: T:

T₀:

TK

$$G = \frac{G_0 \cdot I_{SC} \cdot \left(1 - TK_{ISC} \cdot (T - T_0)\right)}{I_{SC0}}$$

POA irradiance reaching the solar cells Irradiance at reference conditions Measured short circuit current of the PV module Short circuit current of the reference PV module Surface temperature of the PV module Surface temperature of the reference PV module Temperature coefficient of short circuit current

The Soiling Ratio SR_{lsc} index is a metric for the loss in the irradiance reaching the PV modules due to soil accumulation, reducing the transmission of the PV glass (SR I_{sc} = 1 when clean). It compares the actual measured value of the soiled PV module with the expected output.

G:

TSoiled.

$$SR_{ISC} = \frac{I_{SC}^{Soiled}}{I_{SC0} \cdot \left(1 + TK_{ISC} \cdot (T^{Soiled} - T_0)\right) \cdot \left(\frac{G}{G_0}\right)}$$

POA irradiance of the clean PV module I^{Soiled} SC: Measured short circuit current of the soiled PV module Measured temperature of the soiled PV module

The Soiling Loss Index SLI is a metric for the loss in the irradiance, based as well on the measurement of PV module short-circuit current and surface-temperature, expressed as a percentage (SLI = 0% when clean). The SLI is calculated from the irradiance of a clean and a soiled modules as follows:

$$SLI = \left(1 - \frac{G_{Clean}}{G_{Soiled}}\right) \times 100$$

POA irradiance of the clean PV module G_{Clean}: $\mathsf{G}_{_{\mathsf{Soiled}}}$: POA irradiance of the reference PV module

page 1/6

Wrangelstrasse 100, D-10997 Berlin, Germany T: +49 30 6003188-0, E: info@ammonit.com

Ammonit Soiling Measurement Kit

SD2100

Measuring soiling effects

The Ammonit soiling measurement kit compares power output and surface temperature of a naturally-soiled PV module with the data of a clean reference PV module. The measurement station determines local solar irradiation for power output parameter evaluation as well as the module surface temperature from the backside of each PV module.

The Ammonit soiling measurement kit includes the following components:

Amount	Component	Order No.
2	Ammonit I-U Conversion Box	CM8281
2	Surface Temperature Sensor	S68920
2	PV Module (50 W)	M51052

Furthermore, we recommend measuring type and amount of precipitation as well as environmental factors such as pollution. The tilt angle of the PV modules should also be considered in the calculations, as well as existing cleaning plans.

Scheme of Ammonit Soiling Measurement Solution

Ammonit Soiling Measurement Kit

SD2100

Legend:

wt = white / bn = brown / gn = green / ye = yellow / gr = grey / pi = pink / bl =blue / rd = red / bk = black / vio = violet / gnye = green-yellow page 3/6

Ammonit Measurement GmbH Wrangelstrasse 100, D-10997 Berlin, Germany T: +49 30 6003188-0, E: info@ammonit.com measuring wind and solar power www.ammonit.com

Ammonit Soiling Measurement Kit

SD2100

Specifications

I-U Conversion Box Order No. CM 8281

Characteristic	Description
Continuous current*	15 A
Peak current	40 A
Shunt resistance	50 mΩ**
Shunt tolerance	1 %
Shunt temperature coefficient	< 50 ppm/K (20 60 °C)
Max. input voltage ***	48 V
Max. operating temperature @ 16 A	60 °C (if ventilated)
IP class	IP65
Dimensions	160 x 100 x 81 mm

* Corresponding to max. short circuit curent of a solar module

** Other values are possible according to technical requirements

*** Corresponding to the max. open circuit voltage of a solar module

The **I-U Conversion Box** contains a shunt resistor of 50 m Ω (default configuration). According to Ohm's law, the max. continuous current of 15 A results in an output voltage of 0.75 V.

• In order to achieve best match to the output voltage of the CM8281, the Ammonit Meteo-40 data logger must be set to the ±1.0 V range.

Surface Temperature Sensor Order No. S68920

Characteristic	Description
Sensor type	Pt 100 class B
Sensor capture	Silicon rubber patch
Temperature range	-50 150 °C
Dimensions	40 x 13 x 5 mm

Solar Module (50 W / 12 V) Order No. M51052

Characteristic	Description
Module type	Monocrystalline
Standard Test Conditions (STCs) Solar irradiance Cell temperature	1000 W/m² 25 °C
Peak Power (Pmax)	50 W
Short circuit current	(Isc) 3.07 A
Temperature coefficient of Isc (TK I_{sc})	0,081 %/°C
Dimensions	650 x 505 x 35 mm

page 4/6

Ammonit Soiling Measurement Kit

SD2100

I-U Conversion Box

Screenshot Sensor Helper: Configuration of the Soiling Kit – 2x CM8281 & 2x PT100

Sensor type	Sensor type
Soiling Measurement 🗸	Hygro/Thermo
Sensor	Sensor
Ampere Meter (CM8281)	PT100 (S4120
	Installation hei
Installation height (m)	0.0
0.0 🗘	
	Label
Label	T soiled
Isc soiled	
	Serial number
Serial number	
	-
	lemperature O
Analog Current Isc Shunt Resistance (Ω)	0
0.05	Temperature SI
····	
Measurement period	1
1 s v	Measurement p
	1 s
Voltage range	
±1 V v	Analog Channe
	A4
Analog Channel	Current Source
A2 ¥	Current Source
(CS1

100 (S41200) allation height (m) $\hat{\mathbf{v}}$ el oiled al number perature Offset (°C) Ŷ perature Slope (°C/Ω) $\hat{}$ surement period v log Channel \sim rent Source v

v

page 5/6

Formula Soiling loss index

Label

POA Irradiance Ref POA irradiance Clean v POA Irradiance Soil POA irradiance Soiled v

Ammonit Soiling Measurement Kit

SD2100

~

Screenshot Sensor Helper: Configuration of the I-U Conversion Box / Ampere Meter SD2100 (Both boxes must be configured)

Label	\$ Туре	\$	Model	\$	Order No. 🗢	Height 🖨	Seria	No.	\$ Rate 🜲	Channels 🖨	Change 🔶	:	Delete 🔶
T clean	Hygro/Thermo	þ	PT100		S41200	0.0			1 s	A5, CS1	Change		Delete
T soiled	Hygro/Thermo	>	PT100		S41200	0.0			1 s	A4, CS1	Change		Delete
Isc clean	Soiling Measurement		Ampere Meter	r	CM8281	0.0			1 s	A3	Change		Delete
Isc soiled	Soiling Measurement		Ampere Meter	r	CM8281	0.0			1 s	A2	Change		Delete

Screenshot Evaluation Helper: Calculation of the Soiling Ratio (Calculation see page 1)

Formula	Formula
Soiling ratio Isc 🗸 🗸	POA irradiance 🗸
Soiling Ratio Isc index	Plane of Array irradiance
Analog Current Isc Soiled	Analog Current Isc
Isc soiled Analog Current Isc 🗸	Isc soiled Analog Current Isc 🗸
Temperature Soiled	Temperature
T soiled	T soiled V
	Short Circuit Current Reference (A)
Analog Current Isc Clean	3.07
Isc clean Analog Current Isc V	Reference Condition Irradiance (W/m ²)
Temperature Clean	1000
T clean 🗸	
Short Circuit Current Reference (A)	Surface Temperature Reference (°C)
3.07	25 v
5.07	Temperature Coeficient at Isc (%)
Surface Temperature Reference (°C)	0.081 🗘
25 🗘	Label
Temperature Coefficient at los (0/)	Label
	FOA Inadiance Solled
0.081	Save
Label	Save
	Delete
Save	

Evaluation Configuration Overview for SD2100

Label 🔶	Evaluation 🔶	Origin 🔺	Value 💠	Unit 🕈	Slope 🗢	Offset \$	Shunt Resistance ^{\$}	Short Circuit 🗢 Current	Reference Condition + Irradiance	Surface Temperature 🕈	Temperature Coeficient + at Isc	Change 🗢
Other Sensor	Analog Voltage	Al	-0.0037	V	1	0						Change
lsc soiled	Analog Current Isc	A2		А			0.05					Change
Isc clean	Analog Current Isc	AЗ		А			0.05					Change
T soiled	Temperature	A4, CS1	-280.791386	°C	1	0						Change
T clean	Temperature	A5, CS1	-281.463448	°C	1	0						Change
POA irradiance Clean	POA Irradiance	Isc clean, T clean		W/m ²				3.07	1000	25	0.081	Change
Soiling ratio Isc	Soiling Ratio	Isc soiled, T soiled, Isc clean, T clean						3.07		25	0.081	Change
POA irradiance Soiled	POA Irradiance	lsc soiled, T soiled		W/m²				3.07	1000	25	0.081	Change
Soiling loss index (@0.0 m)	Soiling Loss Index	POA irradiance Clean, POA irradiance Soiled		%								Change

page 6/6

Last Modification: 07 July 2023

Wrangelstrasse 100, D-10997 Berlin, Germany T: +49 30 6003188-0, E: info@ammonit.com measuring wind and solar power www.ammonit.com